广义二项式定理

1(1+x)n=k=0(n+k1k1)xk\frac{1}{(1+x)^n}=\sum_{k=0}^{\infty}\begin{pmatrix}n+k-1\\k-1\end{pmatrix}x^k


各种变换

i=1xi=11x\sum_{i=1}^{\infty}x_i=\frac{1}{1-x}

ex=i=0xii!e^x=\sum_{i=0}^{\infty}\frac{x^i}{i!}

ex=1x1+x22!x33!+e^{-x}=1-\frac{x}{1}+\frac{x^2}{2!}-\frac{x^3}{3!}+\dots

ex+ex2=1+x22!+x44!+626!+\frac{e^x+e^{-x}}{2}=1+\frac{x^2}{2!}+\frac{x^4}{4!}+\frac{6^2}{6!}+\dots

ex+ex2=1+x33!+x55!+x77!+\frac{e^x+e^{-x}}{2}=1+\frac{x^3}{3!}+\frac{x^5}{5!}+\frac{x^7}{7!}+\dots

ekx=1+x1+k2x22!+k3x33!+e^{kx}=1+\frac{x}{1}+\frac{k^2x^2}{2!}+\frac{k^3x^3}{3!}+\dots